Journals

  1. Belay, M.A., Rasheed, A., Rossi, P.S., PMultivariate Time Series Anomaly Detection via Low-Rank and Sparse Decomposition, IEEE Sensors
  2. Stadtman, F., Furevik, E., Rasheed, A., Kvamsdal, T., Physics-guided federated learning as an enabler for digital twin, Expert System with Applications, 125169, 2024
  3. Wold, J.W, Stadtmann, F., Rasheed, A., Tabib, M., San, O., Horn, J., Enhancing wind field resolution in complex terrain through a knowledge-driven machine learning approach, Engineering Applications of Artificial Intelligence, 137A, 109167, 2024
  4. Vaaler, A., Husa, S., Menges, D., Nakken, T.L., Rasheed, A., Modular Control Architecture for Safe Marine Navigation: Reinforcement Learning and Predictive Safety Filters, Artificial Intelligence, 336, 104201, 2024
  5. Gupta, P., Rasheed, A., Steen, S., Correlation-based outlier detection for ships’ in-service datasets, J Big Data 11,85, 2024
  6. Belay, M.W., Rasheed, A., Rossi, P.S., MTAD: Multi-Objective Transformer Network for Unsupervised Multi-Sensor Anomaly Detection, IEEE Sensor, 2024
  7. Altindal, M.C. Nivlet, P. Tabib, M.V., Rasheed, A., Kristiansen, T.G., Khosravanian, R., Anomaly detection in multivariate time series of drilling data, Geoenergy Science and Engineering, 212778, 2024
  8. Sørbø, S., Blakseth, S.S., Rasheed, A., Kvamsdal, T., San, O., Enhancing Elasticity Models with Deep Learning: A Novel Corrective Source Term Approach for Accurate Predictions, Applied Soft Computing, 111312, 2024
  9. Føre., M., Alver, M.O., Alfredsen, J.A., Rasheed, A., Hukkelås, T., Bjelland, H.V., Su, B., Ohrem, S.J., Kelasidi, E., Norton, T., Papandroulakis, N., Digital twins in intensive aquaculture – Challenges, opportunities and future prospects, Computers and Electronics in Agriculture, 218, 108676, 2024
  10. Alshantti, A. Varagnolo, D., Rasheed, A., Rahmati, A., Westad, F., CasTGAN: Cascaded Generative Adversarial Network for Realistic Tabular Data Synthesis, IEEE Access, 12, 13213–13232, 2024
  11. Haugstvedt, E.J., Calero, A.M., Lundby, E.T.B., Rasheed, Gravdahl, J. T., A Comparative Study of Sparsity Promoting Techniques in Neural Network for Modeling Non-Linear Dynamics, IEEE Access, 11, 131435–131452, 2023
  12. San, O., Pawar, S., Rasheed, A. Decentralized digital twins of complex dynamical systems. Scientific Reports 13, 20087, 2023
  13. Stadtmann, F., Rasheed A., Kvamsdal, T., Johannessen, K.A., San, O., Tande, J.G.O., et al, Digital Twins in Wind Energy: Emerging Technologies and Industry-Informed Future Directions, IEEE Access, 11, 110762-110795, 2023
  14. Menges, D., Rasheed, A., An environmental disturbance observer framework for autonomous ships, Ocean Engineering 2023, 285, 115412
  15. Gupta, P., Kim, Y.R., Steen, S., Rasheed, A.,  Streamlined Semi-automatic Data Processing Framework for Ship Performance Analysis, International Journal of Naval Architecture and Ocean Engineering, 2023, 100550, 2023
  16. Midjiyawa, Z., Venås, J.V., Kvamsdal, T., Kvarving, A.M., Midtbø, K.H., Rasheed, A., Nested computational fluid dynamic modeling of mean turbulent quantities estimation in complex topography using AROME-SIMRA, Journal of Wind Engineering and Industrial Aerodynamics, 2023, 240 (105497)
  17. Robinson, H., Lundby, E.T.B., Rasheed, A., Gravdahl, J.T., Deep learning assisted physics-based modeling of aluminum extraction processEngineering Applications of Artificial Intelligence 2023, 125 (106623)
  18. Keilegavlen, E., Fonn, E., Johannessen, K.A., Eikehaug, K., Both, J.W., Fernø, M., Kvamsdal, T. Rasheed, A., Nordbotten, J.M., PoroTwin: A digital twin for a FluidFlower rigTransport in Porous Media 2023
  19. Elfarri, E.M., Rasheed, A., San, O., Artificial Intelligence-Driven Digital Twin of a Modern House Demonstrated in Virtual RealityIEEE Access 2023 ;Volum 11. s. 35035-35058
  20. Belay, M.A., Blakseth, S.S., Rasheed, A., Salvo Rossi, P., Unsupervised Anomaly Detection for IoT-Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future DirectionsSensors 2023 , 23 (5)
  21. Lundby, E.T.B., Rasheed, A., Gravdahl, J.T., Halvorsen, I.J., Sparse deep neural networks for modeling aluminum electrolysis dynamics, Applied Soft Computing, 134, 109989, 2023
  22. Ahmed, S.E., San, O., Rasheed, A., Iliescu, T., Veneziani, A., Physics Guided Machine Learning for Variational Multiscale Reduced Order Modeling, SIAM Journal of Scientific Computing, 45(3), 283-313, 2023
  23. Pawar, S., San, O., Rasheed, A., Frame-invariant neural network closures for Kraichnan turbulence, Physica A: Statistical Mechanics and its Applications, 609, 128327, 2022
  24. San, O., Pawar, S. and Rasheed, A. Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems, Scientific Reports, 12, 17947, 2022
  25. Blakseth, S.S., Rasheed, A., Kvamsdal, T. and San, O., Combining physics-based and data-driven techniques for reliable hybrid analysis and modeling using the corrective source term approach, Applied Soft Computing, 128, 109533, 2022
  26. Robinson H., Pawar, S., Rasheed, A., San, O., Physics guided neural networks for modelling of non-linear dynamics, Neural Networks, 154, 333-345, 2022
  27. San, O., Pawar, S., Rasheed, A., Prospects of federated machine learning in fluid dynamics. AIP Advances, 2022
  28. Heiberg, A., Larsen, T.N., Meyer, E., Rasheed, A., San, O., Varagnolo, D., Risk-based implementation of COLREGs for autonomous surface vehicles using deep reinforcement learning, Neural Networks, 152, 17-33, 2022
  29. Gupta, P., Rasheed, A., Steen, S., Ship Performance Monitoring using machine-learning, Ocean Engineering, 254, 111094, 2022
  30. Pawar, S., San, O., Vedula, P., Rasheed, A., Kvamsdal, T., Multi-fidelity information fusion with concatenated neural networks, Scientific Report, 12, 5900, 2022
  31. Blakseth, S.S., Rasheed, A., Kvamsdal, T., San, O. Deep neural network enabled corrective source term approach to hybrid analysis and modeling, Neural Networks, 146, 181-199, 2021
  32. Alshantti, A.A.S., Rasheed, A. Self-organising map based framework for investigating accounts sus- pected of money laundering, Frontiers in Artificial Intelligence, 2021
  33. Ahmed, S. E., San, O., Rasheed, A. and Iliescu, T. Nonlinear proper orthogonal decomposition for convection-dominated flows, Physics of Fluids, 33, 121702, 2021.
  34. Larsen, T.N., Teigen, H.Ø., Laache, T., Varagnolo, D., and Rasheed, A., Comparing Deep Reinforcement Learning Algorithms’ Ability to Safely Navigate Challenging Waters, Frontiers in Robotics and Artificial Intelligence, 8, 287, 2021
  35. Lundby, E.T.B., Rasheed, A., Gravdahl, J.T., Halvorsen, I.J., A novel hybrid analysis and modeling approach applied to aluminum electrolysis process, Journal of Process Control, 105, 62–77, 2021.
  36. Gupta, P., Taskar, B., Steen, S., Rasheed, A., Statistical modeling of Ship’s hydrodynamic performance indicator, Applied Ocean Research, 111, 102623, 2021.
  37. Ahmed, S., Pawar, S., San, O., Rasheed, A., Iliescu, T., and Noack, B., On closures for reduced order models – a spectrum of first-principle to machine-learned avenues, Physics of Fluids, 33, 091301, 2021.
  38. Pawar, S., San, O., Rasheed, A., Navon, I.M., A nonintrusive hybrid neural-physics modeling of incomplete dynamical systems: Lorenz equations, International Journal of Geomathematics, 12, 17, 2021
  39. Pawar, S., San, O., Aditya, N., Rasheed, A., Kvamsdal, T., Model fusion with physics-guided machine learning: projection based reduced order modeling, Physics of Fluids, 33, 067123, 2021. (Editor’s Pick)
  40. San, O., Rasheed, A., Kvamsdal, T. Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution, GAMM Mitteilungen, 44, e202100007, 2021.
  41. Sundby, T., Graham, J. M., Rasheed, A., Tabib, M., San, O., Geometric change detection in digital twins, Digital, 1 (2), 111-129, 2021.
  42. Ahmed, S. E., Pawar, S., San, O., Rasheed, A., Tabib, M., A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction, Computers and Fluids, 221, 104895, 2021.
  43. Stavelin, H., Rasheed, A., San, O., Hestnes, A. J., Applying object detection to marine data and exploring explainability of a fully convolutional neural network using principal component analysis, Ecological Informatics, 62, 101269, 2021.
  44. Ahmed, S. E., San, O., Kara, K., Younis, R., Rasheed, A., Multifidelity computing for coupling full and reduced order models, PLOS ONE, 16(2), e0246092, 2021.
  45. Havenstrøm, S. T., Rasheed, A., San, O. Deep reinforcement learning controller for 3D path following and collision avoidance by autonomous underwater vehicles, Frontiers in Robotics and AI, 7, 566037, 2021.
  46. Pawar, S., San, O., Aksoylu, B., Rasheed, A., Kvamsdal, T. Physics guided machine learning using simplified theories, Physics of Fluids, 33, 011701, 2021.
  47. Ahmed, S. E., San, O., Kara, K., Younis, R., Rasheed, A., Interface learning of multiphysics and multiscale systems, Physical Review E, 102, 053304, 2020.
  48. Ahmed, S. E., Bhar, K., San, O., Rasheed, A. Forward sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction, Physical Review E, 102, 043302, 2020.
  49. Meyer, E., Heiberg, A., Rasheed, A., San, O., COLREG-Compliant Collision Avoidance for Un- manned Surface Vehicle using Deep Reinforcement Learning, IEEE Access, 8, 165344-165364, 2020.
  50. Pawar, S., Ahmed, S. E., San, O., Rasheed, A., Navon I. M., Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows, Physics of Fluids, 32, 076606, 2020.
  51. Pawar, S., Ahmed, S. E., San, O., Rasheed, A. An evolve-then-correct reduced order model for hidden fluid dynamics, Mathematics, 8(4), 570, 2020.
  52. Ahmed, S. E., San, O., Rasheed, A., Iliescu, T., A long short-term memory embedding for hybrid uplifted reduced order models, Physica D: Nonlinear Phenomena, 409, 132471, 2020.
  53. Pawar, S., Ahmed, S. E., San, O., Rasheed, A., Data-driven recovery of hidden physics in reduced order modeling of fluid flows, Physics of Fluids, 32, 036602, 2020.
  54. Meyer, E., Robinson, H., Rasheed, A., San, O., Taming an autonomous surface vehicle for path following and collision avoidance using deep reinforcement learning, IEEE Access, 8, 41466-41481, 2020.
  55. Rasheed, A., San, O., Kvamsdal, T., Digital twin: values, challenges and enablers from a modeling perspective, IEEE Access, 8, 21980-22012, 2020.
  56. Pawar, S., San, O., Rasheed, A., Vedula, P., A priori analysis on deep learning of subgrid-scale parameterizations for Kraichnan turbulence, Theoretical and Computational Fluid Dynamics, 34, 429-455, 2020.
  57. Vaddireddy, H., Rasheed, A., Staples, A. E., San, O., Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data, Physics of Fluids, 32, 015113, 2020. (Editor’s Pick)
  58. Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Numerical assessment of RANS turbulence models for the development of data driven reduced order models, Ocean Engineering, 196, 106799, 2020
  59. Ahmed, S. E., Rahman, S. M., San, O., Rasheed, A., Navon, I. M., Memory embedded non-intrusive reduced order modeling of non-ergodic flows, Physics of Fluids, 31, 126602, 2019.
  60. Rahman, S. M., Pawar, S., San, O., Rasheed, A., Iliescu, T., Nonintrusive reduced order modeling framework for quasigeostrophic turbulence, Physical Review E, 100, 053306, 2019.
  61. Pawar, S., Rahman, S. M., Vaddireddy, H., San, O., Rasheed, A., Vedula, P., A deep learning enabler for non-intrusive reduced order modeling of fluid flows, Physics of Fluids, 31, 085101, 2019. (Featured Article)
  62. Maulik, R., San, O., Rasheed, A. and Vedula, P. Sub-grid modelling for two-dimensional turbulence using neural networks, Journal of Fluid Mechanics, 858, 122-144, 2019.
  63. Siddiqui, M.S., Rasheed, A., Kvamsdal, T. Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel, Wind and Structures, 29, 405–416, 2019
  64. Siddiqui, M.S., Fonn, E., Kvamsdal, T., Rasheed, A., Finite Volume high-fidelity simulation com- bined with finite-element-based reduced order modeling of incompressible flow problems, Energies, 12, 1271, 2019
  65. Fonn, E., Brummelen, H.van, Kvamsdal, T., Rasheed, A., Fast divergence-conforming reduced basis methods for steady Navier–Stokes flow, Computer Methods in Applied Mechanics and Engineering, 346, 486–512, 2019
  66. Siddiqui, M.S., Rasheed, A., Tabib, M.V., Kvamsdal, T., Numerical investigation of modeling frame- works and geometric approximations on NREL 5MW wind turbine, Renewable Energy, 132, 1058– 1075, 2019
  67. Maulik, R., San, O., Rasheed, A., Vedula, P., Data-driven deconvolution for large eddy simulations of Kraichnan turbulence, Physics of Fluids, 30, 125109, 2018.
  68. Rahman, S. M., San, O., Rasheed, A., A hybrid approach for model order reduction of barotropic quasi-geostrophic turbulence, Fluids, 3(4), 86, 2018.
  69. Rahman, S. M., Rasheed, A., San, O., A hybrid analytics paradigm combining physics-based mod- eling and data-driven modeling to accelerate incompressible flow solvers, Fluids, 3(3), 50, 2018.
  70. Nordanger, K., Rasheed, A., Okstad, K.M., Kvarving, A.M., Holdahl, R., Kvamsdal, T., Numer- ical benchmarking of fluid–structure interaction: An isogeometric finite element approach. Ocean Engineering, 124, 324–339, 2016
  71. Nordanger, K., Holdahl, R., Kvarving, A.M., Kvamsdal, T. Rasheed, A., Simulation of airflow past a 2D NACA0015 airfoil using an isogeometric incompressible Navier–Stokes solver with the Spalart– Allmaras turbulence model, Computer Methods in Applied Mechanics and Engineering, 290, 183–208, 2015
  72. Nordanger, K., Holdahl, R., Kvarving, A.M., Rasheed, A., Kvamsdal, T., Implementation and com- parison of three isogeometric Navier–Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number, Computer Methods in Applied Mechanics and Engi- neering, 284, 664–688, 2014
  73. Rasheed, A., Mushtaq, A. Numerical analysis of the flying condition at the Alta airport, Norway,Aviation, 18, 109–119, 2014.
  74. Rasheed, A., Karstein S., CFD Analysis of terrain induced turbulence at Kristiansand airport, kjevik, Aviation, 17, 104–112, 2013.
  75. Rasheed, A., Robinson, D., Characterization of dispersive fluxes in mesoscale modelsusing les of flow over an array of cubes, International Journal of Atmospheric Sciences, 17, 898095, 2013.
  76. Rasheed, A., Robinson, D., Clappier, A., Narayanan, C., Lakehal, D., Representing complexities in urban geometry in mesoscale modeling, International Journal of Climatology, 31, 289–301, 2011.

Conference proceedings

  1. Tabib, M.V., Rasheed, A., Multivariate Time-Series Methods with Uncertainty Estimation for Correcting Physics-Based Model: Comparisons and Generalization for Industrial Drilling Process,
  2. Yusuf, O.U., Rasheed, A., Lindseth, F., Exploring Urban Mobility Trends using Cellular Network Data, NetZero 2024
  3. Belay, M.W., Rasheed, A., Rossi, P.S., Autoregressive Density Estimation Transformers for Self-Supervised Anomaly Detection of Multivariate Time Series
  4. Belay, M.W., Rasheed, A., Rossi, P.S., Self-Supervised Modular Architecture for Multi-Sensor Anomaly Detection and Localization
  5. Yusuf, O.U., Rasheed, A., Lindseth, F., Public Transportation Trends in Trondheim Municipality, 8th International Conference on Control, Automation and Diagnosis 2024
  6. Stadtman, F., Rasheed, A., Anomaly Detection in Floating Offshore Wind Energy through a Diagnostic Digital Twin, OMAE 2024
  7. Rasheed, A., Stadtmann, F., Fonn, E., Tabib, M., Tsiolakis, V., Panjwani, B., Johannessen, K.A., Kvamsdal, T., San, O., Tande, J.O., Barstad, I., Christiansen, T., Rishoff, E., Frøyd, L., Rasmussen, T., Digital Twin for Wind Energy: Latest updates from the NorthWind project, OMAE 2024
  8. Nakken, T.L., Barlaug, E., Rasheed, A., Low-dimensional latent encoding of a high-dimensional range-finding sensor for reinforcement learning-based collision avoidance, OMAE 2024
  9. Menges, D., von Brandis, A., Rasheed, A., Digital Twin for Autonomous Surface Vessels for Safe Maritime Navigation, OMAE 2024
  10. Menges, D., Tengesdal, T., Rasheed, A., Nonlinear Model Predictive Control for Enhanced Navigation of Autonomous Surface Vessels, 8th IFAC Conference on Nonlinear Model Predictive Control, NMPC 2024
  11. Stadtmann, F., and Rasheed, A., Federated Learning as an Enabler of Wind Turbine Digital Twins, Torque 2024
  12. Menges, D., Rasheed, A., Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data,IEEE Conference on Artificial Intelligence, Singapore, 2024
  13. Lundby, E.T.B., Robinson, H., Rasheed, A., Halvorsen, I.J. and Gravdahl, J.T., Sparse Neural Networks with Skip-Connections for Identification of Aluminum Electrolysis Cell, 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, Singapore, 2023, pp. 5506-5513
  14. Stadtmann, Florian; Mahalingam, Hary Pirajan; Rasheed, Adil. (2023) Data Integration Framework for Virtual Reality Enabled Digital Twins. IEEE 9th World Forum on Internet of Things , Aveiro, Portugal 2023-10-12 – 2023-10-27
  15. Tabib, M., Skare, K., Bruaset, E., Rasheed, A., Data-Driven Spatio-Temporal Modelling and Opti- mal Sensor Placement for a Digital Twin Set-Up. Eng. Proc. 2023, 39, 98.
  16. Nivlet, P., Bjorkevoll, K.S., Tabib, M., Skogestad, J.O., Lund, B., Nybo, R., and Rasheed, A., Towards Real-Time Bad Hole Cleaning Problem Detection Through Adaptive Deep Learning Models, Middle East Oil, Gas and Geosciences Show, Manama, Bahrain
  17. Zhang, W, Vatn, J., Rasheed, A., Statistical analysis of offshore wind turbine failures, 32nd European Safety and Reliability Conference
  18. Stadtman, F., Rasheed, A., Rasmussen, T., Standalone, Descriptive, and Predictive Digital Twin of an Onshore Wind Farm in Complex Terrain, Journal of Physics Conference Series, 2626, 012030
  19. Bjørkøy, H., Engmark, H.A., Rasaheed, A., Varagnolo, D., Regularization when modelling with biased simulation data as a prior, IFAC WC 2023 IFAC-PapersOnLine, 56(2), 4000-4005, 2023
  20. Larsen, T.N., Hansen, H., Rasheed, A., Risk-based Convolutional Perception Models for Colli- sion Avoidance in Autonomous Marine Surface Vessels using Deep Reinforcement Learning, IFAC- PapersOnLine, 56(2), 10033-10038, 2023
  21. Vaaler, A, Robinson, H, Tengesdal, T, and Rasheed, A. Modular Collision Avoidance Using Pre- dictive Safety Filters. Proceedings of the ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. Volume 1: Offshore Technology. Melbourne, Australia. June 11–16, 2023. V001T01A016. ASME.
  22. Menges, D, Sætre, SM, and Rasheed, A. Digital Twin for Autonomous Surface Vessels to Generate Situational Awareness. Proceedings of the ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. Volume 5: Ocean Engineering. Melbourne, Australia. June 11–16, 2023. V005T06A025. ASME.
  23. Stadtmann, F, Wassertheurer, HAG, and Rasheed, A. Demonstration of a Standalone, Descrip- tive, and Predictive Digital Twin of a Floating Offshore Wind Turbine. Proceedings of the ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. Volume 8: Ocean Renewable Energy. Melbourne, Australia. June 11–16, 2023. V008T09A039. ASME.
  24. Tabib, MV, Nivlet, P, Skogestad, JO, Nybø, R, and Rasheed, A. A Hybrid Approach to Detect Bad Hole Cleaning. Proceedings of the ASME 2023 42nd International Conference on Ocean, Off- shore and Arctic Engineering. Volume 9: Offshore Geotechnics; Petroleum Technology. Melbourne, Australia. June 11–16, 2023. V009T11A009. ASME.
  25. Tabib, M.V., Nivlet, P., Bjørkboll, K.S., Skogestad, J.O., Nybø, R. and Rasheed, A, An Intrusive Hybrid-Analytics and Modelling Approach Involving Deep-learning for Efficient and Accurate Pre- dictions of Hole-cleaning Process During the Wellbore Drilling Simulations, SPE EuropEC – Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition
  26. Tabib, M.V., Stene, J.K., Rasheed, A., Langeland, O., Gundersen, F., Machine Learning for Capacity Utilization Along the Routes of an Urban Freight Service. In: Sanfilippo, F., Granmo, OC., Yayilgan, S.Y., Bajwa, I.S. (eds) Intelligent Technologies and Applications. INTAP 2021. Communications in Computer and Information Science, vol 1616. Springer, Cham. 2022
  27. Bjørkøy, H.B., Engmark, H., Rasheed, A., Varagnolo, D., Wienerization Based Control of Nonlinear Systems, 2022 European Control Conference (ECC), 2022, pp. 641-648
  28. Wanwan Zhang, Vatn, J., Rasheed, A., A review of failure prognostics for predictive maintenance of offshore wind turbines, Journal of Physics Conference Series, 2022
  29. Tabib, M.V., Tsiolakis, V., Pawar S., Ahmed, S.E., Rasheed, A., Kvamsdal, T., San, O., Hybrid deep- learning POD-based parametric reduced order model for flow around wind-turbine blade, Journal of Physics: Conference Series, 2022
  30. Jain, R.P., Brekke, E.F., Rasheed, A., Unsupervised Clustering of Marine Vessel Trajectories in Historical AIS Database, 2022 25th International Conference on Information Fusion (FUSION), 2022, pp. 1-6,
  31. Engmark, H., Bjørkøy, H., Rasheed, A., Varagnolo, D., Wienerization of systems in nonlinear control canonical normal form, IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico, 4485-4492, 2022
  32. Busetto, R., Thomas, T.N., Rasheed, A., Varagnolo, D., Formentin, S., A receding-horizon estima- tion and control framework for the content sequencing problem, 2022 European Control Conference (ECC), 2022, pp. 1908-1915
  33. Thomas, T.N., Busetto, R., Varagnolo, D., Formentin, S., Rasheed, A., A receding horizon approach for curriculum management in higher education, 13th IFAC Symposium on Advances in Control Education 2022
  34. Pawar, S., Ahmed, S.E., San, O., Rasheed, A. Hybrid analysis and modeling for next generation of digital twins. Journal of Physics: Conference Series, 2018(1):012031, 2021
  35. Tabib, M.V., Pawar, S., Ahmed, S.E., Rasheed, A., San., O., A non-intrusive parametric reduced order model for urban wind flow using deep learning and Grassmann manifold. Journal of Physics: Conference Series, 2018(1):012038, 2021
  36. Tabib, M.V., Midtbø, K.H., Rasheed, A., Kvamsdal, T., Skaslien, T.,A nested multi-scale model for assessing urban wind conditions : Comparison of Large Eddy Simulation versus RANS turbulence models when operating at the finest scale of the nesting. Journal of Physics: Conference Series, 2018(1):012039, 2021
  37. Tsiolakis, V., Kvamsdal, T., Rasheed, A., Fonn, E., van Brummelen, H., Reduced order models for finite-volume simulations of turbulent flow around wind-turbine blades. Journal of Physics: Conference Series, 2018(1):012042, sep 2021
  38. Tabib, M.V., Rasheed, A., Uteng, T.P., Machine learning with subsequent physics-based analytics for guiding transport planning, International Conference on Applied Artificial Intelligence (ICAPAI), 2021, pp. 1-6,
  39. Ahmed, S.E., Pawar, S., San, O., Rasheed, A., Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning. AIAA AVIATION 2020. June 15–19, 2020.
  40. Fonn, E., van Brummelen, H., Kvamsdal, T., Rasheed, A., Fast divergence-conforming reduced basis methods for stationary and transient flow problems. Journal of Physics Conference Series, 1669:012031, 2020
  41. Tran, D. T., Robinson, H., Rasheed, A., San, O., Tabib, M., Kvamsdal, T., GANs enabled super- resolution reconstruction of wind field. Journal of Physics Conference Series, 1669:012029, 2020 (Best poster award)
  42. Siddiqui, M.S., Kvamsdal, T. and Rasheed, A., High fidelity computational fluid dynamics assess- ment of wind tunnel turbine test. Journal of Physics: Conference Series, 1356:012044, 2019
  43. Tabib, M., Rasheed, A. and Kvamsdal, T. High resolution CFD modelling nad prediction of terrain induced wind shear and turbulence for aviaiton safety. MekIT’19 – 10th National Conference on Computational Mechanics. International Conference on Offshore Mechanics and Arctic Engineering (CIMNE), ISBN 978-84-949194-9-7:323–341, 2019
  44. Rasheed, A., San, O. and Kvamsdal, T., Hybrid Analysis and Modeling as an enabler for Big Data Cybernetics. Proceeding of the 32nd Nordic Seminar on Computational Mechanics, ISBN 978-952- 62-2420-6:21–24, 2019
  45. Tabib, M.V., Rasheed, A., and Fonn, E., A computational framework involving CFD and data mining tools for analyzing disease in carotid artery bifurcation. Progress in Applied CFD – CFD2017 Selected papers from 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, ISBN 978-82-536-1544-8:125 – 132, 2017
  46. Siddiqui, M.S., Rasheed, A., Tabib, M.V., and Kvamsdal, T., Numerical Modeling Framework for Wind Turbine Analysis & Atmospheric Boundary Layer Interaction. AIAA 2017-1162. 35th Wind Energy Symposium. January 2017.
  47. Siddiqui, M.S., Rasheed, A., Kvamsdal, T., Tabib, M.V., Influence of tip speed ratio on wake flow characteristics utilizing fully resolved CFD methodology. Journal of Physics: Conference Series, 854:012043, May 2017
  48. Tabib, M.V., Siddiqui, M.S., Fonn, E., Rasheed, A., and Kvamsdal, T., Near wake region of an industrial scale wind turbine: comparing LES-ALM with LES-SMI simulations using data mining (POD). Journal of Physics: Conference Series, 854:012044, May 2017
  49. Gupta, P., Steen, S. and Rasheed, A., Big Data Analytics As a Tool to Monitor Hydrodynamic Performance of a Ship. Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Volume 7A: Ocean Engineering. Glasgow, Scotland, UK. June 9–14, 2019. V07AT06A059. ASME.
  50. Fonn, E., Rasheed, A., Tabib, M., and Kvamsdal, T., A Step Towards a Reduced Order Modelling of Flow Characterized by Wakes Using Proper Orthogonal Decomposition, Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Volume 1: Offshore Technology. Trondheim, Norway. June 25–30, 2017. V001T01A011. ASME.
  51. Fonn, E., Tabib, M., Siddiqui, M.S., Rasheed, A. and Kvamsdal, T., A step towards reduced order modelling of flow characterized by wakes using proper orthogonal decomposition. Energy Procedia, 137:452 – 459, 2017. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017
  52. Siddiqui, M.S., Rasheed, A., Tabib, M.V., Fonn, E. and Trond Kvamsdal. On Interactions Between Wind Turbines and the Marine Boundary Layer. Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Volume 10: Ocean Renewable Energy. Trondheim, Norway. June 25–30, 2017. V010T09A052. ASME.
  53. Tabib, M., Rasheed, A., and Fuchs, F.G., Analysis of Unsteady Hydrodynamics Related to Vortex Induced Vibrations on Bluff-Bodied Offshore Structure. Proceedings of the ASME 2017 36th In- ternational Conference on Ocean, Offshore and Arctic Engineering. Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV. Trondheim, Norway. June 25–30, 2017. V002T08A027. ASME.
  54. Rasheed, A., Süld, J.K., and Tabib, M. Effect of Uni- and Bi-Directional Coupling of Ocean-Met Interaction on Significant Wave Height and Local Wind. Proceedings of the ASME 2017 36th In- ternational Conference on Ocean, Offshore and Arctic Engineering. Volume 7B: Ocean Engineering. Trondheim, Norway. June 25–30, 2017. V07BT06A052. ASME.
  55. Rasheed, A., Tabib, M.V., and Kristiansen, J. Wind Farm Modeling in a Realistic Environment Using a Multiscale Approach. Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Volume 10: Ocean Renewable Energy. Trondheim, Norway. June 25–30, 2017. V010T09A051. ASME.
  56. Rasheed, A., Süld, J.K., Tabib, M.V., Kvamsdal, T., and Kristiansen J., Demonstrating the impact of bidirectional coupling on the performance of an ocean-met model. Energy Procedia, 137:443 – 451, 2017. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017
  57. Tabib, M.V., Siddiqui, M.S., Rasheed, A., and Kvamdal T., Industrial scale turbine and associated wake development comparison of RANS based actuator line vs sliding mesh interface vs multiple reference frame method. Energy Procedia, 137:487-–496, 2017. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017
  58. Tabib, M.V., Rasheed, A., Siddiqui, M.S., and Kvamsdal, T., A full-scale 3D Vs 2.5D Vs 2D analysis of flow pattern and forces for an industrial-scale 5MW NREL reference wind-turbine. Energy Pro- cedia, 137:477 – 486, 2017. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017
  59. Siddiqui, M.S., Rasheed, A., Kvamsdal, T., and Tabib, M.V., Quasi-static & dynamic numerical modeling of full scale NREL 5MW wind turbine. Energy Procedia, 137:460 – 467, 2017. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017
  60. Tabib, M.V., Rasheed, A., and Uteng, T.P., Methodology for assessing cycling comfort during a smart city development, Energy Procedia, 122:361 – 366, 2017. CISBAT 2017 International Conference Future Buildings & Districts – Energy Efficiency from Nano to Urban Scale
  61. Rasheed, A. and Tabib, M.V., Flow characterization in complex terrain. International Journal of Aerospace and Mechanical Engineering, 3(1), 2016
  62. Fuchs, F.G., Rasheed, A., Tabib, M. and Fonn, E., Wake modeling in complex terrain using a hybrid Eulerian-Lagrangian Split Solver. Journal of Physics: Conference Series, 753:082031, sep 2016
  63. Siddiqui, M.S., Rasheed, A., Tabib, M.V., and Kvamsdal, T., Numerical Analysis of NREL 5MW Wind Turbine: A Study Towards a Better Understanding of Wake Characteristic and Torque Gen- eration Mechanism. Journal of Physics: Conference Series, 753:032059, Sep 2016
  64. Tabib, M.V., Rasheed, A. and Fuchs, F., Analyzing complex wake-terrain interactions and its im- plications on wind-farm performance. Journal of Physics: Conference Series, 753:032063, sep 2016
  65. Tabib, M.V., Rasheed, A. and Kvamsdal, T., LES and RANS simulation of onshore bessaker wind farm: analysing terrain and wake effects on wind farm performance. Journal of Physics: Conference Series, 625:012032, June 2015
  66. van Opstal, T., Fonn, E., Holdahl, R. Kvamsdal, T., Kvarving, A.M., Mathisen, K.M., Nordanger, K., Okstad, K.M., Rasheed, A., and Tabib, M.V., Isogeometric methods for CFD and FSI-simulation of flow around turbine blades. Energy Procedia, 80:442-–449, 2015. 12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015
  67. Süld, J.K., Rasheed, A., Kristiansen, J., Sætra, Ø., Carrasco, A., and Kvamsdal, T., Mesoscale Numerical Modelling of Met-ocean Interactions. Energy Procedia, 80:433 – 441, 2015. 12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015
  68. Siddiqui, M.S., Rasheed, A., Kvamsdal, T., and Tabib, M.V., Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia, 80:312 – 320, 2015. 12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015
  69. Tabib, M.V., Rasheed, A., and Kvamsdal, T., Investigation of the impact of wakes and stratification on the performance of an onshore wind farm. Energy Procedia, 80:302 – 311, 2015. 12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015
  70. Fonn, E., Rasheed, A., Kvarving, A.M., and Trond Kvamsdal. Spline based mesh generator for wind turbine blades. 27th Nordic Seminar on Computational Mechanics, Stockholm, Sweden, 2014
  71. Rasheed, A., Süld, J., and Kvamsdal, T., A hybrid numerical and statistical model for wind power forecasting. Grand Renewable Energy 2014, International Conference and Exhibition, 2014
  72. Rasheed, Adil, Jakob Kristoffer Süld, and Trond Kvamsdal. A multiscale wind and power forecast system for wind farms. Energy Procedia, 53:290 – 299, 2014. EERA DeepWind’ 2014, 11th Deep Sea Offshore Wind R&D Conference
  73. Rasheed, Adil, Runar Holdahl, Trond Kvamsdal, and Espen Åkervik. A comprehensive simulation methodology for fluid-structure interaction of offshore wind turbines. Energy Procedia, 53:135 – 145, 2014. EERA DeepWind’ 2014, 11th Deep Sea Offshore Wind R&D Conference
  74. Rasheed, A., Sørli, K., Süld, J., and Midtbø, K.H., Downscaling as a way to predict hazardous conditions for aviation activities. SESAR Innovation Day, 2013
  75. Rasheed, A., Sørli, K., Holdahl, R., and Kvamsdal, T., A multiscale approach to micrositing of wind turbines. Energy Procedia, 14:1458 – 1463, 2012. 2011 2nd International Conference on Advances in Energy Engineering (ICAEE)
  76. Rasheed, A., Robinson, D., and Lakehal, D., On the effects of complex urban geome- tries on mesoscale modeling. Proceeding of the International Symposium on Computational Wind Engi- neering, Chapel Hill, North Carolina, USA, 2010
  77. Robinson, D., Haldi, F., Kaempf, J., Leroux, P., Perez, D., Rasheed, A., and Wilke, U., From the neighborhood to the city: Resource flow modeling for urban sustainability. Proceeding of the CISBAT 2009, Lausanne, Switzerland, 2009
  78. Rasheed, A., Robinson, D., Narayanan, C., and Lakehal, D., On the effects of complex urban geometries on mesoscale modeling. Proceeding of the seventh International Conference on Urban Climate, Yokohama, Japan, 2009
  79. Rasheed, A., Robinson, D., and Clappier, A., A new urban canopy model. Proceeding of the seventh International Conference on Urban Climate, Yokohama, Japan, 2009
  80. Rasheed, A. and Robinson, D., Multiscale modeling of urban climate. Proceeding of the Eleventh International IBPSA Conference: Building Simulation, Glasgow, UK, 2009
  81. Robinson, D., Haldi, F., Kaempf, J., Leroux, P., Rasheed, A., and Wilke, U., Citysim: Comprehen- sive micro simulation of resource flows for sustainable urban planning. Proceeding of the Eleventh International IBPSA Conference: Building Simulation, Glasgow, UK, 2009
  82. Rasheed, A., Robinson, D., and Clappier, A., On the sensitivity of building performance to the urban heat island effect. Proceeding of the CISBAT, Lausanne, Switzerland, 2007